RoboCatz.com

Program 8 (Fall 2023)


The code below is a set of functions, variables, constants, and algorithms that are the work of RoboCatz for the Fall 2023 season.

const pi = 3.14159                             
wheelDiameter = 5.6                            
wheelCircumference = wheelDiameter * pi       
distanceBetweenWheels = 90
gearRatio = 28/20
degreesPerCentimeter =360/wheelCircumference
upDirection=1
downDirection=-1
print('im on line 8')
function resetAccessoryMotors(power=55) {
 	setMotor(A,power)
 	setMotor(D,power)
 	sleep(1000)
 	waitHereUntil isMotorStalled(A) and isMotorStalled(D)
 	beep(100,800,10)
	stopAllMotors()
 	resetEncoder(A)
 	resetEncoder(D)
}
function motorsUp(motor,degree){
	print(`Working on motor ${motor} tp degree ${degree}`)
	originalEncoderValue = encoderValue(motor)
	setMotor(motor,40*updirection)
	print(`Motor should have power now of ${40*updirection}`)
	waitHereUntil abs(encoderValue(motor)-originalEncoderValue) > degree
	print(encoderValue(motor))
	stopAllMotors()
}
function moveBothDown(degree){
	originalEncoderValue = encoderValue(A)
    syncMotors(A, D, 40*downDirection)
	waitHereUntil abs(encoderValue(A)-originalEncoderValue) > degree
	stopAllMotors()
}
function moveBackward (distance) {
    acceleration = degreesPerCentimeter * gearRatio * distance*.1 //20.571 is degrees per centimeter
    atTopSpeed = degreesPerCentimeter * gearRatio * distance*.8
    deceleration = degreesPerCentimeter * gearRatio * distance*.1
    //beep()
    print(`${acceleration} ${atTopSpeed} ${deceleration}`)
	stopAllMotors(true),sleep(100)
	stepMotors( B , C , 30 ,acceleration, atTopSpeed, deceleration)
	waitHereWhile getMotorSpeed(B) == 0
	waitHereUntil getMotorSpeed(B) == 0
	stopAllMotors(true)
//	beep(100,8000,1000)
}

function swingTurnRight(degreesRobotShouldTurn = 90) {
	motorDegreesPerRobotDegree = (swingTurnCircumference / wheelCircumference )
	acceleration = 0.25 * degreesRobotShouldTurn * motorDegreesPerRobotDegree
	atTopSpeed   = 0.70 * degreesRobotShouldTurn * motorDegreesPerRobotDegree
	deceleration = 0.15 * degreesRobotShouldTurn * motorDegreesPerRobotDegree
	stopAllMotors(true), sleep(100)
	stepMotor(B, 25, acceleration, atTopSpeed, deceleration) 
	sleep(100)
	waitHereWhile getMotorSpeed(B)==0
	sleep(100)
	waitHereUntil getMotorSpeed(B)==0  
	stopAllMotors(true) 
}
function moveForward(distance) { 
	if (distance*1 > 0) {
		acceleration = degreesPerCentimeter *  gearRatio * distance*.05
		atTopSpeed = degreesPerCentimeter * gearRatio * distance*.9
		deceleration = degreesPerCentimeter * gearRatio *distance*.05
		if ( acceleration == 0 ) alert('sorry.  try again.')
		currGyro=gyroSensorValue()
		startingEncoder=encoderValue(B)
		stopAllMotors(true), sleep(100)
		await stepMotors( B , C , -50 ,acceleration) // Accelerate
		while abs(startingEncoder-encoderValue(B)) 30 ) {  // while the light sensor sees a white ground
	drawText(50, 60, lightSensorPct(2), 2)                    //   Show the lightSensor Percentage
	sleep(100)                        //   sleep for 1/10th of a second
}                                   // repeat the loop
stopAllMotors()                     // line has been detected
sleep(500)
// Follow the line
target = 40
gain = 1.5
resetEncoder( B )
while abs(encoderValue(B))< 600.00 {  // Distance to follow line is 600 degrees on motor B
	drawText(10,10, gain*(lightSensorPct(2)-target)+'  ', 2)
	syncMotors(B, C, 20, gain*(lightSensorPct(2)-target))
	clearRect(0,90, 178, 38)  // clears the bottom of the LCD screen
	fillRect((90-30*0.5)-(lightSensorPct(2)-target),90, 30, 38)
	sleep(100)
}
stopAllMotors(true), sleep(300) // Rest
resetEncoder( B )
resetEncoder( C )
// Make a zig-zag maneuver
swingTurnRight(45)        // Turn slightly toward the center model
moveBackward(13)          // Drive toward the center model
swingTurnLeft(45)         // Turn to face East
moveBackward(20)          // Keep moving East
swingTurnLeftThree(180)   // Turn toward the 3d Model
resetAccessoryMotors(40)